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Abstract— This work addresses mission planning for au- paths represented as continuous trajectories, and Saalign

tonomous underwater gliders based on predictions of an et al. whose wavefront method propagates path cost as a
uncertain, time-varying current eld. Glider submersibles are  f,nction of departure time [8]

highly sensitive to prevailing currents so mission planners must ’
account for ocean tides and eddies. Previous work in variable-
current path planning assumes that current predictions are
perfect, but in practice these forecasts may be inaccurate. Her
we evaluate plan fragility using empirical tests on historical
ocean forecasts for which followup data is available. We present
methods for glider path planning and control in a time-varying
current field. A case study scenario in the Southern California
Bight uses current predictions drawn from the Regional Ocean
Monitoring System (ROMS).

. INTRODUCTION

We consider path planning for autonomous underwater
gliders based on advance forecasts of an uncertain, time- Fig. 1. Slocum Glider submersible, courtesy Rutgers Uniters
varying current field. The system we describe will be tested
as part of the Ocean Observatories Initiative (OOI), a These approaches find optimal paths to a given spatial
science-driven oceanic sensor network. The OOI will intelocation. However, our deployments will also require that
grate moorings, radar and Autonomous Underwater Vehiclggiders be present at a specific time. Specifyspatiotem-
(AUVs), assimilating real-time data into regional foretiimg poral goals is important both for tracking time-varying ocean
models. The initial tests of this system will use underwategphenomena [10], [12] and for time-coordination of multiple
gliders, autonomous submersibles designed for long duratiassets within the OOI. Early arrival will not suffice if the
missions [4]. Gliders travel efficiently by changing buoggan glider cannot hold position against ocean currents. This
and using winged surfaces to produce a sawtooth trajectorgquires a new approach to path planning in time-varying
(Figure 1). Gliders can travel for months on a single battergurrent fields. Recently we presented a wavefront algorithm
charge, pausing at intervals on the surface to transminseie for path planning in time varying currents based on an
data and receive commands. earliest valid arrival criterion. Our approach minimizes the

Gliders are highly sensitive to prevailing currents. Cahst time of travel to the goal position under the constraint that
current forces are often larger than the propulsion forcthe glider is then capable of holding position against ause
of the glider, and can change on time scales of hourgntil the desired time is reached [13]. This permits goals
Effective mission planning must exploit these forces bypecified as arbitrary spatiotemporal volumes.
placing the glider strategically to exploit beneficial sdend Previous tests of variable-current path planning have as-
eddies. Fortunately ocean models such as the Regional Oceaimed that planning occurs with perfect knowledge of future
Monitoring System, or ROMS [1], [2], [11] can now producecurrents. In practice it is difficult to forecast currentsac
current forecasts at time scales and resolutions suffitgent rately and actual conditions can quickly diverge. This work
inform glider plans. While a growing body of work addressegvaluates performance by simulating realistic discrejgsnc
path planning in a static current field [9], [5], [7], current between planning and runtime currents. We use historical
in the glider scenario vary on time scales much shorter tharxcean current predictions for which followup data is avail-
the mission duration. Dynamic currents of the Slocum glideable, providing an advance current prediction and the hctua
domain demand true spatiotemporal path planning. Advancesnditions. Our study considers a case scenario using ROMS
in this area include work by Zhang et al. [6] who optimizepredictions in the Southern California Bight. We present

our path planning methodology and some simple control
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/# A. Travel time estimates

| / goal i Path planning requires that we calculate the travel time
] between adjacent grid squares. In practice forward veiocit

\, |,, \ I—, is affected by dynamics of the dive trajectory and periodic

Al _ pauses for GPS acquisition. Moreover, the glider may deviat

y 0 from the straight-line path between grid squares sincerit ca

T \7 o \ only correct its heading at each GPS waypoint. Over long

: distances these effects average out, so this high-levél pat

v , planner assumes fixed flight parameters yielding a constant
. still-water velocity.

The path planner assumes that the glider will choose a

control propulsion that combines with the prevailing catre

to yield a velocity in the desired direction of travel. We defi

2-vectors corresponding to control propulsiop,,i o, @

Figd- f Tlhe 3D tSﬁé;ﬂOiemp:)ril gri?j- Th; fglider begins irtl mdoce?ter constant local current with velocity,, -, and a resulting net

g/neIIO\r/%iZeaaf %p). T?le\/rlglis;ectgggﬁess sﬁg\zt?trﬁglggrﬁest valti’c)iC:r:i?/r;I velocity vactuar- The CO”“‘?' VelOCIty_mUSt have a r_nagthd_e

time for each node’s spatial location. Arrival times are coredutor all NO greater than the nominal velocity of the vehicle in still

nodes,_but for clarity we hide arrival times for nodes not ipgrating in - water, so thatvwmm” < m. The net velocity has magnitude

the optimal path. X and follows the desired direction of trave

Vactual = Vcontrol + Czy‘r =\ (1)

We choose the propulsion velocity,,,:ro; t0 maximize
travel speed, producing the largest possible motion in the
desired direction of travel:

. W int locati
Comm Uplink aypaint location

A = max |Ucontrol + Czy'r| (2)

Vcontrol

Depth interval h

A path between adjacent nodes is considered impossible if
the glider would require longer than a single time interval
to travel between them. Otherwise, the transit time between
adjacent nodes is determined by the net veloaify

Note that ROMS models actually supply depth-variable
Fig. 3. Dive profile for our simplified glider motion model usingroent current pre'dlctlonﬁxym with depth mdlces}_l' We_ r_nUSt
predictions at different depths. GPS updates are extendedep at the take these into account as well since the glider visits many
surface that occur at regular time intervals. depths during travel. The current predictions vary in waiti
resolution from5m near the ocean surface down 360m
resolutions at depth. The glider follows a sinusoidal path
with maximum dive depth determined by the user-defined
maximum, the vehicle limit, or the sea floor (Figure 3).

The dive period is determined by flight parameters such
as pump displacement and the dive and climb angles. In
We use ROMS forecast models provide to provide a deptlthis study the vertical flight profile is taken as fixed; our
averaged current estimatg,,, for an ocean volume with planner controls the glider's heading but not its depth. The
discrete grid squares indexed by time intervaldatitudex,  fraction of time spent at each depth level approaches a known
longitudey. A glider path is comprised aegments traveling  quantity over long distances, so we integrate currents over
between adjacent nodes in the 3D grid. Segment endpoint® depth dimension to estimate straight-line travel times

take specific continuous time values in their nodes’ intistva between latitude/longitude positions. The result is the t
We treat the temporal and spatial dimensions differentlyjlider can construct plans in the 3D volume comprised by
segment endpoints must lie exactly on the physical locatiospatial dimensions: andy, and the temporal dimension
represented by grid points, but they can lie anywhere withiihe total current force experienced by the glider is taken to
the continuous time interval covered by the grid squarge constant within each grid square; it is given®y,,:
Figure 2 illustrates a simple four-segment path through the 1

spatiotemporal grid. The glider begins in the lower centef a Coyr = SNID] > F()Cayrn )
travels a path to the goal location represented by the yellow h h

grid square at the top. The final segment of this trip consistghere f () is the time in each glide cycle spent in the depth
of a station keeping action; the glider waits at the sameinterval h. Our planner uses a constant dive angle and a
location until it enters the time interval of the destinatio maximum depth o200m or the sea floor depth, whichever
node. is less.

1. PATH PLANNING APPROACH



B. Wavefront path planning final segment consists of a hold position action. Physical

Our path planning uses the spatiotemporal wavefront a|gg2cat|ons have not changed between the final two nodes so

rithm of Thompson et al. [13]. The planner uses a wavefrorfl€i €arliest arrival times are identical. We record theiest
expansion to compute the time required to reach any locati@pSSile arrival time yet discovered for each node in the. gri
and time in a 3D spatiotemporal volume. It optimizes ai Wavefrqnt a_llgorlthm recursively expands nodes until the
earliest valid arrival criterion that seeks a path to reach aJ0al location is reached. _ —

given spatial location as early as possible, provided that t  ©OUr Path planning strategy begins by initializing a queue
glider can then hold position against currents until thérees ©f Unexpanded reachable nodes. Initially this queue cositai
time is reached. This objective favors fast travel to thel god® Starting location. Each expansion operation takesape t
location to provide a margin of error for recovering fromnOdeNp of_the queue and S|mulate_s travel_ In each of the 8
execution uncertainty. At the same time it permits goals t60MpPass directions, as well as holding position at the orre

be specified with a destinatidime. node into the next time step. _ ,
If the hold position action is successful it results in the

: — : parent’s time of arrival4, being preserved in the same
Input: Nodes\, Current predictions”, Start location physical location at the next time interval. For travel besw
Output: IS;;.;F]P — (P, different physical locations we compute a travel tinteased
e - . on the earliest possible time of departure from the parent
1 Initialize Agtare < 0, all other A «— inf . s
2 Initialize wavefront qUEUE) = {Nar} node. If the parent node was itself reached by a hold position
3 while Q not empty do ) action, then it is occupied from the start of its intervalthis
case the earliest possible departutgappens at the start of

4 find “parent node’N, € Q at zp, yp, 7, Minimizing

A, the time interval. We can identify this case whenever a garen
5 Q—Q\N, is occupied prior to its own time interval, i.el, ¢ 7,. This
6 define “hold position destination\;, at is a subtle point: a node’s associated arrival time need not
(Tp, Yp, Tp + 1) be within the time interval represented by the node. Instead
7 if N, reachable from AV, then it refers to the earliest valid arrival, i.e. the earliessgible
g f/}tl T_“;l\’} arrival which then permits position holding until enteritige
o 0 " QUN; node.

We compute travel times from equation 2 assuming

1 foreach (v, y..) neighboring \, do a constant local current velocity. Depending on the time

12 if (xc,y.) reachable from A, then . e - .
13 if A, ¢ 7, then required, the destination child node could turn out to be in
14 tdepart < Mint : t € 7, either the parent’s time interval or the following one. The
15 else resulting arrival time is the best arrival yet realized ire th
16 tacpart < Ap . child nodeN.. We retain paths corresponding to the earliest
17 tarrival < tdepart+ travel time (fromC) . . ) ) . . .

18 o T s € T ppssmle arrival time for each child, which requires stgrm

19 “child” node . at (e, ye, Te) single best parenM . for each reachable node in the grid.
20 if tarrival < Ac then The algorithm continues recursively expanding child nodes
21 Ac — tarrival until it has accounted for all grid locations (Algorithm We

22 g/lc B/L\J[p/\f expand new nodes in order of increasing arrival times which
24 P — {Nona} 0r Nona Minimizing Aena requires maintaining a §orted queue tantamount to a wave-
25 Noprey < Mena (parent ofNe,q) front expansion [7] or Dijkstra method. This guarantees tha
26 while Nstart ¢ P do discounting discretization effects, the earliest posstival

27 Nprev «— Mprev (parent ofNVprey) is known for every reachable node; the wavefront solution

28 P — P UNprev

is optimal up to discretization accuracy. After completel
29 return P p p Yy pletely

expanding all the nodes in the grid one can trace a valid path
Algorithm 1: Computation of arrival times and parent nodes from any goal node back to the start using the recorded parent
satisfying the “earliest valid arrival” criterion) is a priority queue nodes (lines 24-29). The result of the planning procedure is

of unexpanded nodes maintained in order of increasing &rriva a sequence of segments through adjacent 3D grid squares
times. Subscript®, c, h indicate data associated with the current

parent, child, and station-keeping destination nodeserAfhding that is Fhe_oretica"y Wi_thin th_e glid_er’s p_hys_ical capatyil
the set of “best parents\M we compute the optimal patR by and optimizes the earliest valid arrival criterion.
tracing parents from the goal back to the origin. The arrival timesA also define areachability function:

the locations for a particular time step that are reachable
The path planning algorithm computes € IR for each by a glider beginning at the original start location. The
node; this is defined as the earliest possible time of arrivédocontours of this function constitute a useful data pobdu
to location (z,y) for the “hold position” action ending in for mission planners; they show legal locations for waypoin
time interval . Often a node directly following another at placement during glider planning. Figure 4 shows a glider
the same physical location will take its predecessor’s ezalypath together with reachability isocontours.
of A due to position-holding. For example, in Figure 2 the We discounted any trial for which the currents at the
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Fig. 5. Estimates of Eastward current velocity for a locatiear the Los
Angeles coastline (33.5 N, 241.5 E). Both the hourly foreeasl 6-hour
nowcast data products are shown.

Finally, the forecast and nowcast products tend to diverge
in the later hours of the simulation; this is typical of the
simulation domain and reflects the accumulation of errors in
the forecast predictions.

Glider deployment operators conventionally refine glider
plans during most communications periods; this allows them
Fig. 4. Typical solution for earliest arrival showing thedirsimulation to refine the en_tlre _mls_5|on_ _plan_ at intervals 6f— 8
time step. The red path represents the optimal glider pateoigours of hours. However, in principle it is still advantageous torpla
the reachability function are shown in yellow and greenhwitue arrows  paths based on the full predictive window of ROMS current
showing the final timeslice of the time-varying current field. forecasts. Not only does this optimize glider travel by plgc
the vehicle in more favorable long-term positions but itldou

endpoint were greater than the glider's own propulsionallewate the onerous operational requirements of mayuall

These scenarios resulted in attempts to pass through I.Wémitoring glider progress throughout the day. Thus, our

target node at speed, by first lingering in calmer Watergxperiment evaluates path planning for the full 48-houketim
9 P y genng cale of ROMS predictions.

and then dashing through the target at the appropriate tinie . o

Naturally these plans were quite fragile, but requiring at _We madel avehlgle similar to the Webb _Research Slocum

least one time interval-worth of station-holding remedieid glider [14] that navigates by dead-reckoning between perl-
dic GPS acquisitions. We translate the path planner’s opti

problem. If the mission planners don't care about targetinﬁ] . X ) .
a particular time of arrival but simply want to reach a al trajectory into a timed sequence of segments, with each

given spatial location as quickly as possible, the algorith segment active during a specific time duration. The physical

can easily be modified to accommodate this scenario. OP{Sh'Cle cannot follow this path perfectly because it reesiv

simply stops the planning when any node in the target spatigply periodic position updates. Instead we use a simple

position is surrounded by expanded neighbors, after Whic%ursuit method to track the trajectory; we define intermiedia

one can be certain that there is no earlier-arriving path. goal waypoints that are revised at the start of each diveecycl
At each surfacing the simulated glider updates its position

1. EXPERIMENTAL METHOD using GPS and adjusts the glider heading based on the

Our test scenario uses historical ROMS forecasts for tH&IlTent active waypoint. Our simulation presumes surfacin
Southern California Bight in August and September 200gRctivities every60 minutes. Each planning trial requires that
ROMS is a 4D-VAR based oceanographic simulation thdpe glider travel from a predefined start location to some end
models ocean convection and current processes to predfg@ation approximately30km distant. Ground-truth currents
currents, sea height, and salinity. It uses boundary congit e drawn from ROMS nowcasts. We selecédtest paths
provided by real-time data streams such as CODAR (rad&? cover the area of interest Wlth a variety of h_eadlngs. .
measurements of surface current speed), sea surface tem!he tests compare three different path planning strategies
perature, and moorings. The numerical model provides two « An omniscient wavefront approach computes a path

120 140

main current-related data productdowcasts are estimates based on the wavefront planning and perfect knowledge

of current ocean conditions based on the latest available Of the run-time currents. Naturally this is unrealistic for

real-time data. The nowcasts are updated ew@riyours. real ocean conditions.

Alternatively, currenforecasts use a numerical simulationto  « A realistic wavefront method uses wavefront planning

predict future ocean conditions up 48-hours in advance. based on the error-prone curréatecast data products.
Figure 5 shows typica| examp|es o8-hour forecast and « A simple alternative does not use path planning at all.

nowcast estimates for currents at two locations in the simul ~ Instead it always travels directly towards the final goal.

tion area. Note that current velocities often reach mageiu Each segment of the trajectory is active during a specifie tim
of 0.8m/s; this exceeds the glider’s own propulsion whichperiod; we compute a heading to reach the active segment’s
would carry it at just0.2 — 0.3m/s in still water. There is endpoint at each surfacing. We also consider several mgthod
also a strong tidal influence apparent with 6-hour peridglici of deriving this direction (Figure 6). Current-sensitivanérol
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Fig. 6. We use several control strategies to track the ptiraectory, Fig- 7. Emperical glider positions and control propulsiors bur
These include current-sensitive control that accountiatlp for predictive  three control strategies with hourly surfacings. Curtglintel control (white

forces, current-blind control that aims directly toward therent active ~Circles) generally strays slightly down stream of the ideath.
waypoint, and a third option that forgoes path planninggdther.

IV. RESULTS

computes the control propulsion that combines with pre- Each test has one of three outcomes. The first possibility,

dicted currents to carry the vehicle toward the intermediatV/Nich can happen for either the realistic or omniscient
goal. Current-blind control applies a propulsion forcetie t Planner, occurs whenever there is no valid path to reach the
direction of the next waypoint, so that the path itself usegoal in the 48-hour Wmdo_W' This generally happens in the
current predictions but the local waypoint-following doesCaSe Of strong countervailing currents that overwhelm the
not. This is more realistic for deployment scenarios wher8lider's propulsion. In this case no plan is generated and

bandwidth limits preclude uploading current forecastshte t W€ do not run the followup simulation. This case comprises
glider. Finally, a greedy strategy with no path p|annings,doeapprommaterSO% of the planning trials. Alternatively when

not have access to any current forecast information so trial does not use a planner, or the path planning system

always propels the vehicle in the direction of the final goafdentifies a valid plan, in which cases the simulated glider
either succeeds to fails to reach the goal.

Our experiments use wavefront planning to find inter- \ve compute an error score for each trial based on the
polating waypoints for each path, in both directions, foyisiance between the final glider position and the desired
two 48-hour periods spanning Sept 1 to 5, 2009. Thgnysical location. Figure 8 shows the distributions of ehes
goal for each trial is to position the glider at the oppositeyrors over all simulation trials. This comparison exchide
waypoint 48-hour planning window. We set gliders’ still-\n5 \yhere the path planner finds no valid path. Note that
water horizontal velocity td.3m/s. Gliders plan within a ; simulation updates heading 6@ minute intervals, so
travel zone consisting of the rectangular region enclo#i®g j; js ynreasonable for a glider to hold position exactly at
start and end waypoints, with an additional latitude/londg o target. Therefore distances less thatkm are tan-
margin of0.2 degrees. Any valid glider path must lie entirely 3 mount to perfect successes, and distance errors within
within this spatiotemporal volume. We simulate two difiére ;.. 4re often sufficient for mission planning. Our tests
spatial resolutions for the current predictions. The fiest, §iq not show a significant performance difference between
full-resolution simulation with1km grid squares, is the e gifferent current-sensitive planning methods, or keefw
highest resolution typically used for ROMS forecasts. Weqniro| strategies utilizing the same current-sensititenp
also simulate the commo6km grid square resolution by anecdotal evidence from trials such as Figure 7 suggest that
subsampling the current forecast data. current-sensitive control could provide a benefit, but tkis

After the planning is complete we simulated the glidenot significant for the majority of the simulated trials we
using the simple motion model described above. The platonsidered.
execution environment uses the nowcast data, which differsOn the other hand there is a clear difference between
somewhat from the realistic current forecasts. This sitesla methods utilizing current predictions and greedy methods
a realistic discrepancy between predicted and actualmstre that do not involve a path planner. Simulations without dpat
Another source of execution uncertainty for both realistiplanner can fail spectacularly; the worst quartile of ggeed
and omniscient planners is the period of the dive cycle. Weials ends with the glider at lea$8km off target, but when
update the simulated glider’'s position eveiy minutes to planning is involved only a handful of outlier trials misses
simulate GPS acquisition and course corrections at periodhe target. The benefit is largely due to the planner’s giitit
surfacing events. reject invalid paths. However, even in trials where valithga
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from the target location at the desired 48-hour time. Redésnghow
median and quartiles, whiskers the extent of the data (ekgudutliers,
which are plotted individually). OCBC: Omniscient, currdaiind control.
OCSC: Omniscient, current-sensitive control. RCBS: Realiurrent-

The path planner described in this work will shortly be
deployed as part of a broader mission planning system within
the Ocean Observatories Initiative Observing System Simul
tion Experiment (OSSE). Later it will join a mission plangin
system for physical gliders in the Mid-Atlantic Bight. We
hope to improve the system with more sophisticated motion
models and the ability to modify glider flight parameters
mid-mission.
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are found there is a significant median difference of errorsy,
suggesting that planning-based approaches provide iragrov
accuracy over planner-free methods (significant to 95%). 5]

These results are corroborated by mean absolute velocitiés
(Figure 9). Current-sensitive path plans make faster smgr
toward the goal, offering a higher rate of progress per timd®!
step by exploiting time-varying currents.

V. CONCLUSIONS

Glider mission planning is a challenging problem domain
because the phenomena under observation and vehicle mgt
tion constraints can change dramatically on mission time
scales. This work has sought to quantify the effect of faseca [9
inaccuracy on the validity of mission plans. In our trials,
glider performance using path planning from 48-hour fore-

e AT [10]
casts was statistically indistinguishable from perforoen
using perfect current predictions.

The main advantage of the path planner in these tests[i4]
to recognize and exclude dangerous destinations. The path
planner is quite effective at rejecting infeasible pathemeh [12]
the glider would be pushed off course, which provides a valu-
able means of reducing risk in automated mission planning.
At the same time, the reachability estimates computed by tis]
path planner offer an intuitive way to visualize the envelop
of planning possibilities and can assist gliders to idgrdéfe
mission goals that don't carry the glider through dangerous4
tides or eddies.

(7]
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